Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator
نویسندگان
چکیده
Ionic actuators have attracted attention due to their remarkably large strain under low-voltage stimulation. Because actuation performance is mainly dominated by the electrochemical and electromechanical processes of the electrode layer, the electrode material and structure are crucial. Here, we report a graphitic carbon nitride nanosheet electrode-based ionic actuator that displays high electrochemical activity and electromechanical conversion abilities, including large specific capacitance (259.4 F g(-1)) with ionic liquid as the electrolyte, fast actuation response (0.5±0.03% in 300 ms), large electromechanical strain (0.93±0.03%) and high actuation stability (100,000 cycles) under 3 V. The key to the high performance lies in the hierarchical pore structure with dominant size <2 nm, optimal pyridinic nitrogen active sites (6.78%) and effective conductivity (382 S m(-1)) of the electrode. Our study represents an important step towards artificial muscle technology in which heteroatom modulation in electrodes plays an important role in promoting electrochemical actuation performance.
منابع مشابه
Functionalized Graphitic Carbon Nitride for Metal-free, Flexible and Rewritable Nonvolatile Memory Device via Direct Laser-Writing
Graphitic carbon nitride nanosheet (g-C3N4-NS) has layered structure similar with graphene nanosheet and presents unusual physicochemical properties due to the s-triazine fragments. But their electronic and electrochemical applications are limited by the relatively poor conductivity. The current work provides the first example that atomically thick g-C3N4-NSs are the ideal candidate as the acti...
متن کاملA density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
متن کاملA density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
متن کاملGraphitic Carbon Nitride/Reduced Graphene Oxide/Silver Oxide Nanostructures with Enhanced Photocatalytic Activity in Visible Light
Visible light active graphitic carbon nitride/reduced graphene oxide/silver oxide nanocomposites with a p-n heterojunction structure were synthesized by chemical deposition methods. Prepared samples were characterized by different physico-chemical technics such as XRD, FTIR, SEM, TEM and DRS. Photocatalytic activity investigated by analyzing the Acid blue 92 (AB92) concentration during the time...
متن کاملSynthesis of spirooxindole derivatives catalyzed by Fe (III)@graphitic carbon nitride nanocomposite via one-pot multi-component reaction
Fe (III) supported graphitic carbon nitride nanocomposite was synthesized by impregnation of FeCl3 with g- C3N4 (Fe (III)@g-C3N4). Then, the synthesis of spirooxindole derivatives was carried out in the presence of Fe (III) @ graphitic carbon nitride nanocompositevia the multi-component reaction of malononitrile, isatins, and 1,3...
متن کامل